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THE COOLING AND CONDENSATION OF FLARE CORONAL PLASMA

S. K. Antiochos and P. A. Sturrock
Institute for Plasma Research

Stanford University

ABSTRACT

---- We investigate a model for the decay of flare heated coronal loops

in which rapid radiative cooling at the loop base creates strong

pressure gradients which, in turn, generate large (supersonic) downward

flows. Hence, the coronal material cools and I'condenses'onto the flare

chromosphere. The important features of this model which distinguish it

from previous models of flare cooling are: (1) Most of the thermal

energy of the coronal plasma may be lost by mass motion rather than by

conduction or coronal radiationj (2) Flare loops are not isobaric

during their decay phase, and large downward velocities are present near

the footpoints (3) The differential emission measure q has a strong

temperature dependence, q ,l T3 "5.

These results can account for recent observations of compact flare

loops that are not consistent with the previous cooling models.
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1. INTRODUCTION

Recent observations (Dere et al. 1977, Underwood et al. 1978, Dere

and Cook 1979, and Widing and Spicer 1980) indicate that, during the

decay phase of at least some compact flares, the differential emission

measure q has a strong dependence on temperature for the hot coronal

material. These authors found that q(T) a Ta with 6 > 3.0 for

105.5 < T < 107 K, where q is defined as:

-1
q 2 1 dTTds ' )

where A is the area of the emitting region and n is the electron

density. Underwood et al. (1978) point out that this result is not

compatible with models of a flare loop in which conduction to the

chromosphere is the dominant energy loss mechanism of the flare plasma

and suggest that radiation may dominate the cooling, particularly in

view of the observation that the coronal density tends to be high in

compact flares, (Moore et al. 1979). However, Antiochos (1980) found

that models in which radiation dominates were also incompatible with the

observations since such models also predict a weak dependence of q

on T, specifically, 6 < 1.5 over most of the temperature range.

Widing and Spicer (1980) have recently suggested that the observed

large value for 6 may be due to a collection of many loops with dif-

ferent temperatures. This proposal is essentially identical to that of

Dere and Cook (1979). However, as pointed out by Antiochos (1980), this

interpretation is a tenable one if, for at least one of the loops, 6 >

1.5. Widing and Spicer (1980) do not justify such an assumption since



they do not discuss the form of the differential emission measure of

each loop. It is, in fact, possible for the existing cooling models of

flare loops to yield a large value for 6 (Antiochos 1980), but only

over a very small temperature range and only if there is a large varia-

tion in the cross-sectional area of the loops from their tops to their

footpoints (Antiochos 1980). Although a carefully selected combination

of such loops can reproduce the observed form for the differential emis-

sion measure, there are other observations that are in conflict with the

existing models.

A feature common to both the conduction and the radiation dominated

models is that all velocities are assumed to be small compared to the

sound speed, so that the plasma in any particular flare loop is approxi-

mately isobaric. Several observations appear to be at odds with this

assumption. Underwood et al. (1978) observed supersonic downward veloc-

ities in the cooler regions of the flare plasma (T < 105 K). Dere and

Cook (1979) and Widing and Spicer (1980) inferred large pressure differ-

ences between the hot material (T - 107 K) and the cooler (T - 105

K), the hot plasma having a much larger pressure (by more than an order

of magnitude). In addition, Cook and Dere (1979) have observed large

downward velocities in the decay phase of a compact flare and have in-

ferred that the enthalpy flux due to these velocities is an important

energy loss mechanism for the coronal flare plasma. Such large veloci-

ties cannot be reconciled with the existing models even if a combination

of many loops is assumed.

The results discussed above have led us to consider a model of a

flare loop in which the main energy loss is due to mass motions, specif-

ically that coronal material cools and condenses at high (supersonic)
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velocity onto the flare chromosphere. In the next section, we investi-

gate this model in detail and determine the resulting form for the

differential emission measure.

II. MODEL

From physical considerations, and in order to simplify the calcula-

tions, we divide a cooling flare loop into three distinct physical re-

gions characterized by their temperatures. The bulk of the loop volume

and mass is essentially at the maximum coronal temperature CT > 10 7 K).

[It is well known that flare loops appear to be almost isothermal all

the way down to their footpoints (Dere and Cook 1979), and the form of

the differential emission measure (the large values of 6) implies that

most of the flare mass and volume must be at the highest temperature.]

At the base of the loop is cool plasma (T < 10 K) which we 'consider

to be part of the flare chromosphere. Material at intermediate tempera-

tures (105 < T < 107 K) forms the flare transition region.

We expect that physical conditions are quite different in each of

the three regions. The relevant time scales for the evolution of the

plasma (the conductive and radiative cooling time scales) have strong

temperature dependences (see, for example, Antiochos 1980):

T ~PH2T -7/ (2a)

and

Tr cc P,1T5 (2b)

where P is the pressure, H is the temperature scale height, and we

note that the radiative loss coefficient for optically thin coronal
3



plasma (Cox and Tucker 1969 and Raymond et al. 1976) varies approxi:-

mately as T1 2 It is evident from relations (2) that the low tempera-

ture material has the shortest cooling time since it loses energy very

rapidly by radiation. We expect this to be the case for the cool base

plasma. On the other hand, we expect that the 10 K plasma has a rela-

tively long cooling time because its radiative time scale is much longer

[from (2b), approximately five orders of magnitude larger than for the

105 K material], and its conductive time scale is known to be of the

same order as its radiative time scale (Moore et al. 1979). If the base

region of a flare loop does cool more rapidly than the hot region, we

expect that strong pressure gradients will be established and large

downward velocities will develop in the intermediate transition region.

This situation is, indeed, found to occur in numerical simulation

of the decay of flare loops (Antiochos and Krall 1979 and Antiochos

1980a). In these calculations, it was found that a cool region formed

at the loop base and that large downward velocities were generated near

the base. However, due to numerical difficulties associated with the

small size scale of the transition region (Antiochos and Krall 1979), it

was not possible by numerical simulation to determine the detailed tem-

perature and density profiles in the transition region and hence obtain

the differential emission measure.

Therefore, we make the key simplification in this model that the

transition region is assumed to be in a steady state. Of course, a

flare loop is never in a true steady state during its decay phase since

the plasma is continuously cooling. However, we expect that the time

scale for the evolution of the loop as a whole is the cooling time of

the hot region, which is large compared to the time scale either for
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cooling or for mass propagation in the transition region. The physical bf
model that we propose is that the hot coronal plasma, which comprises

the bulk of the loop, acts as a reservoir of mass and heat for a steady-

state flow through the transition region onto the cool base, which acts

as both a mass sink and a heat sink because it is such an efficient ra-

diator. Since the time scale for the evolution of the hot reservoir is

long compared to the mass propagation time scale in the transition re-

gion, an approximately steady-state flow may be established. We check

subsequently that this condition is, indeed, satisfied by our model.

III. EQUATIONS

Under the assumption that the flow is in a steady state, the rele-

vant equations for the transition region are

p(s) V(s) = pov , (3)

2 2
pv + P PVo P (4)

and

ds (1PV3  + - Pv - K s d -n 2A(T) '(5)
d 2 3 2 dT\

together with the equation of state,

P - 2knT . (6)

In equations (3) through (5), p is the mass density, v is the veloc-

ity along the loop (i.e., parallel to the magnetic field), K is the

coefficient of conduction given by Spitzer (1962) as

.... .... .. .. ,. .. .. , ,= ._ :_ ' , : ....i -



-6 5/2(7K 10 T(7

AMT is the radiative loss coefficient which we assume has the simple

f orm

A(T) n 10-19. 2 T_1 2  (8)

in the temperature range 105 < T < 107, and the subscript "o" mndi-.

cates that the variable is to be evaluated at the top of the transition

region which is defined to be at s - 0 (s increases downwards).

Since the size scale for the transition region is small compared to both

the gravitational scale height and the size scale for variations of the

magnetic field, we neglect the effects of gravity and a variable cross-

sectional area for the loop in equations (3) through (5).

Much insight into the possible forms of the plasm flow can be

obtained by examining only the equations of continuity and momentum, (3)

and (4). Combining these, the temperature can be expressed in terms of

the velocity

where/

U\ 5ML)

and M0 is the initial Mach number,

-1

vt--i .o (11)
0 0 (3 o/

Equation (9) describes a simple parabola. There are two types of solu-

tions corresponding to the two branches of the parabola: as T de-

creases to zero, either v decreases to zero or v increases to vb.
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The former case corresponds to subsonic flow and leads back to the4

conductive and radiative models discussed previously (Antiochos 1980);

we are now interested in the latter case.

For this case, the smallest possible initial velocity is v0

v/,since this corresponds to the maximum point of the parabola.

This selection for v. implies, by equation (11), that we are choosing

the upper boundary of the steady state region to occur where the flow

begins to be supersonic; the initial Mach number is -o2 3/5. It is

now evident that the velocity does not vary greatly throughout the tran-

sition region: the velocity at the loop base must be less than a factor

of two greater than at the top. Since the density is inversely propor-

tional to the velocity, by equation (3), the density also must vary lit-

tle in the steady state region and actually decreases slightly as the

temperature decreases. Clearly, the loop plasma is far from being

is oba ri c.

In order to obtain the differential emission measure and, hence,

6, the heat equation (5) must be solved for the temperature gradients.

It is convenient to do so using dimensionless variables. We define

e (12)T

and (/2K T
7Pv1 / 0 (13)

Expressed in ters of these variables and using (9), equation (5)

becomes

d (2ed1 /

j dx V /8(2 +2/1 -6 e-)
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where a is a numerical constant,

0-2. 7

a= - . (15)

Two boundary conditions must now be specified. One is simply that

O(O) = 1 , (16)

The other condition is obtained by specifying the initial temperature

gradient or, equivalently, fo, where

f de7/2

dx *. (17 )dx

Changing back to physical variables, we note that fo corresponds to

the initial ratio of the conductive heat flux to the mechanical energy

flux,

f(T) dT\ (18)

0 Povors

Since this quantity is not known a priori, we use it as a free parameter

and investigate the forms of the solutions for various fo. Although

equation (14) is highly nonlinear, it has the basic form appropriate for

an initial value problem and can be readily solved numerically using a

standard ordinary differential equation routine.

IV. RESULTS

In Figure 1, the variation of f with 0 along the loop is shown

for various values of fo" Since f is directly proportional to the

,,, zJ.,P



heat flux, Figure I corresponds to a plot of heat flux versus tempera-

ture. As is indicated by the figure, there are two classes of solutions

separated by the critical initial flux, foc -0.148. For f'o < foc'

the heat flux vanishes at a finite temperature. These cases are unphys-

ical because they imply an upward heat flux at the base of the transi-

tion region. For example, for the case f. 0.14, the flux changes

sign at 6 - 0.95, so that the temperature profile has a minimum at

this value.

We conclude that, if the initial heat flux is too small, it is not

possible to obtain a temperature profile in which the temperature

decreases monotonically down to chromospheric values. This result has

also been found for static models of the transition region (e.g., Moore

and Fung 1972). In the static models, the lower limit to the initial

heat flux is due basically to the requirement that the conductive flux

be sufficiently large to power the radiative losses. Although this

requirement also applies to our steady-state model, we find that the

effect of the mass motion is to place an even more stringent requirement

on the initial heat flux.

Using (17) to rewrite the energy equation (14) in terms of 6 as

the independent variable, we obtain

(2- f jf ( 1 - 6) 2 (19)
( 2 , 2  f _ __9 d 6

The first term represents the effects of mass motion. For 6 > 15/16,

the mass motion acts as a heat sink and the heat flux must decrease from

its initial value. For e < 15/16, on the other hand, mass motion acts

as a heat source and the heat flux may increase depending on the relative

9



importance of the radiative loss term. If, for the moment, we neglect

the radiative losses, equation (19) may be integrated directly to yield

f - f + 2(1-e) -/T - . (20)

Since the radiative losses can act only to decrease f, equation (20)

may be regarded as setting an upper limit to the heat flux at any

temperature in the transition region.

It is evident from (20) that, if fo 4 1/8, the heat flux will

vanish at some value of e > 15/16. Even if f0 > 1/8, the heat flux

may still vanish at a finite e due to the effects of radiative losses;

as noted previously, this will occur if fo foc = 0.148. However, if

fo is sufficiently near the critical value foc' then even though f

may vanish at a finite value of 6, this value may be so small as to be

well below the temperature at the base of our model, emin 10- 2, so

that these cases will be physically acceptable because they imply a

monotonically decreasing temperature throughout the transition region.

It turns out, however, that these cases do not lead to a steep

dependence of the differential emission measure on temperature. For

example, consider the case f - foc" The heat flux vanishes at e - 0

where it has a minimum. For 8 << 1, equation (19) becomes

3 df 8 2 (21)
ffdE) 8 (21

Sir.ce f has a minimum at e - 0, df/dO vanishes there and thus we

obtain that

f a62  (22)

12)

lii



near 8 0. However, from equation (1),

q cn2 0 7/2 (3

Since, as previously noted, n is approximately constant in the steady

state region, we find that

3/2
q (24)

This result is confirmed by exact solution of (19). In Figure 2, q is

plotted on a function of e for f0 - foc * It is evident that, over

most of the temperature range,- q ccT/ so that 6 is no larger than

that characteristic of the static models.

The cases that are of most interest to us are those with fo > f oc

since these exhibit the largest value for S. From Figure 1, we note

that, for fo > 0.15, the heat flux is approximately constant. In

fact, if fo is sufficiently large, then we expect that the radiative

losses are negligible and equation (20) is valid. But equation (2)

indicates that f actually increases as 6 decreases (at least for

9 < 15/16) and hence we expect from (23) that 6 > 7/2. In Figure 2,

q(e) is plotted for the case f. - 0.15; we find, indeed, that 6 f

3.5 over most of the temperature range. We therefore conclude that the

steady-state model can produce a sufficiently large value of 6 to

account for the flare observations, but only if the parameter fo (the

ratio of conductive flux to mechanical flux at the top of the transition

region) is not too small (fo > 0i.1)



On the other hand, f0  cannot be too large because our use of

equations (3) through (5) and, in particular, of the form of the conduc-

tivity (7) is only valid if the heat is "unsaturated." The exact magni-

tude of the conductive flux at which this assumption becomes invalid is

not well known. Clearly, the flux cannot be larger than the product of

the pressure and the electron sound speed so that fo < 40; however,

there are strong reasons to expect that it is actually limited to values

(fo ( 6) substantially less than this (Manheimer 1977).

We also note that, even if the initial heat flux is well within

these limits, the model indicates that the heat flux will saturate at

some lower temperature because we found that both the flux and the den-

sity are approximately constant throughout the steady-state region and,

of course, the sound speed varies as 6 1/2 so that

kPC1 (25)

Since we require that fo > 0.15 in order to account for the observa-

tion of a large 6, relation (25) implies that our model can be applic-

able for, at most, one and a half decades in temperature. However, the

temperature interval over which 6 is observed to be large is only a

decade or so (Underwood et al. 1978, Dere and Cook 1979, Widing and

Spicer 1980), so that our model may, in fact, be applicable throughout

the observed interval.

In order for this to occur, the ratio of the conductive flux to the

mechanical flux at the top of the transition region must be very nearly

equal to 0.15 for all observed flares. This value for fo is not

12



inconsistent with the observed parameters of compact flares. Using (18)

and the result that

v - (3/5)1/2 C , (26)

where CO  is the initial sound speed, we obtain

f = 1054 T2n- H 1 (27)
0 00 0

where Ho  is the temperature scale height at the top of the steady-

state region. Assuming typical flare coronal parameters of To - 107

K and no ~ 1011 cm- 3 and that the scale height Ho  is of the order

of the loop length, Ho - 109.3 cm, we obtain fo ~ 10-0. 9. Therefore,

in view of the large uncertainties in To, no, and Ho, for the flares

observed so far, the flux fo can easily take on values near 0.15.

Even if fo is significantly larger than 0.15, so that the model

used above is not valid, we believe it likely that the effect of mass

motion would still be to yield a large value for 6. However, to prove

this contention, a detailed calculation of the electron distribution

function would be required. In addition, the interpretation of the

observations would be much more difficult if the plasma is nonthermal

(e.g., Shoub 1981).

V. DISCUSSION

The results of the previous section indicate that, in our model,

energy loss by mass motion dominates that by conduction for the coronal

plasma. The conductive flux is only -10% of the enthalpy flux. For the

. ,13i



parameters used in the previous section, we find that the downward ve-

locity at the top of the transition region is vo a 107.6 cm sec-1, the

mass flux is povo M 1052 gm sm- 2 sec -1 , and the mechanical energy flux

is Fm M 101 0 ergs cm-2 sec - 1. Although the magnitude of the enthalpy

flux is quite large, the effective rate of energy loss is reduced because

the cross-sectional area of the loop at the top of the transition region

is expected to be somewhat less than that in the corona due to the diver-

gence of the magnetic field lines (see Antiochos and Sturrock 1976). As-

suming a compression factor (i.e., ratio of cross-sectional area at the

loop top to that at the base) r i 10 implies a time scale for cooling

by mass motions of

IL 02.7
T - 2 7 sec

c V
0

Of course, this is also the time scale for draining the coronal mass out

of a flare loop.

The time scale above is consistent with the observed lifetimes of

compact flare loops. Note that, as claimed in Section II, the time

scale is long compared to the mass propagation time across the transi-

tion region. For the cases fo > 0.15, the temperature scale height

H c 0
7 /2

and, hence, the propagation time decreases very rapidly for lower

temperatures. The situation is similar to that of active region loops

in that the fact that the heat flux is approximately constant implies

that the size scale of the transition region is very small compared to

coronal length scales.

14
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An important consideration is the nature of the base of the steady- I
state flow region; in particular, the effect on the flare choromosphere

of the large mechanical energy flux yielded by our model. Since the

flaw is supersonic, a shock should occur where the condensing material

impinges on the chromosphere. We defer for another article the calcula-

tion of the structure of the shocked material, which we expect to be

complex and possibly not in a steady state. As discussed previously, we

expect that radiation cooling dominates in the base region due to the

high density and the strong line emission at T -10~ K (Cox and Tucker

1969); in fact, it is this rapid cooling rate that creates the pressure

gradients which drive the flow in the first place. A key feature of the

steady-state model is that the large mechnical energy flux acts as an

efficient mechanism to transfer the thermal energy of the hot coronal

plasma to the flare chromosphere where it can be dissipated as UV and

EUV radiation. This distinguishes the present model from previous mod-

els for the cooling (Antiochos and Sturrock 1978, Antiochos 1980) in

which soft x-ray emission is assumed to be the dominant mechanism for

dissipating the thermal energy-of the flare corona.

The main conclusion of this paper is that condensation cooling can

result in a steep dependence of the differential emission measure on

temperature 6 - 3.5, in a loop. Unfortunately, a flare does not con-

sist of a single loop. If it did, then one would expect to observe a

loop structure when viewing the highest temperature line, and two bright

points representing the loop footpoints when viewing in cooler lines.

Instead, one usually observes a loop structure in lines covering a wide

temperature range, 10~ < T < 10 , implying that the emission in cooler

lines is dominated by emission from cool loops rather than from the base

15



points of the hottest loops. Therefore, the fact that the value of 6

is somewhat less than 3.5 and that the density is not approximately con-

stant (as in our model) but tends to decrease with decreasing temperature

(Widing and Spicer 1980), can be explained as due to the contribution of

cooler loops to the observed emission. We emphasize again, however, that

a multi-loop model cannot account for the observation that 6 > 3 unless

at least some of the loops have this value (or larger values) for 6,

and this is not consistent with previous models for flare cooling.

Additionally, the observation of large downward velocities in the

decay phase of flares strongly favors the model presented here, but these

observations were made for lower temperature lines, below the temperature

interval in which 6 is large. In order to critically test the conden-

sation cooling model, observations of high temperature material (T > 106

K) are required with good spatial resolution, so as to minimize the con-

tamination by cool loops, and with good spectral resolution, so as to ac-

curately measure doppler shifts. Experiments on the SM satellite may be

able to provide such data.

This work was performed under NASA Contract No. NGL 05-020-272 and

ONR Contract No. N00014-75-C-0673.
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CAPTIONS

1. The variation of the heat flux f with temperature e along the

loop for three values of the parameter fop the flux at the top of

the steady-state transition region.

2. The variation of the differential emission measure q with tempera-

ture 8 along the loop for two values of the parameter fo. The

broken curve refers to the model with fo foc and the solid curve

to fo - 0.15.
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features of this model which distinguish It from previous models of flare
cooling are: (1) Most of the thermal energy of the coronal plasma may be
lost by mass motion rather than by conduction or coronal radiation. (2) Flare
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are present near the footpoints. (3) The differential emission measure q
has a strong temperature dependence, q a T3 _5.

These results can account for recent observations of compact flare loops
that are not consistent with the previous cooling models.
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